17,245 research outputs found

    Self-injurious behaviour in individuals with autism spectrum disorder

    Get PDF
    Background: Autism spectrum disorder (ASD) has been identified as a risk marker for self-injurious behaviour. In this study we aimed to describe the prevalence, topography and correlates of self-injury in individuals with ASD in contrast to individuals with Fragile X and Down syndromes and examine person characteristics associated with self-injury across and within these groups.\ud \ud Method: Carers of individuals with ASD (N=149; mean age=9.98, SD=4.86), Fragile X syndrome (N=123; mean age=15.32, SD=8.74) and Down syndrome (N=49; mean age=15.84, SD=12.59) completed questionnaires relating to the presence and topography of self-injury Information was also gathered regarding demographic characteristics, affect, autistic behaviour, hyperactivity, impulsivity and repetitive behaviour.\ud \ud Results: Self-injurious behaviour was displayed by 50% of the ASD sample; a significantly higher prevalence than in the Down syndrome group (18.4%) but broadly similar to the prevalence in Fragile X syndrome (54.5%). Self-injury was associated with significantly higher levels of autistic behaviour within the Down and Fragile X syndrome groups. Within the ASD group, the presence of self-injury was associated with significantly higher levels of impulsivity and hyperactivity, negative affect and significantly lower levels of ability and speech.\ud \ud Conclusions: Self-injurious behaviour is prevalent in individuals with ASD and the presence of ASD phenomenology increases the risk of self-injury in individuals with known genetic disorders but without a diagnosis of idiopathic autism. Person characteristics associated with self-injury in ASD indicate a role for impaired behavioural inhibition, low levels of ability and negative affect in the development of self-injurious behaviour

    Human neuronal stargazin-like proteins, γ_2, γ_3 and γ_4; an investigation of their specific localization in human brain and their influence on Ca_V2.1 voltage-dependent calcium channels expressed in Xenopus oocytes

    Get PDF
    Background: Stargazin (γ2) and the closely related γ3, and γ4 transmembrane proteins are part of a family of proteins that may act as both neuronal voltage-dependent calcium channel (VDCC) γ subunits and transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazoleproponinc (AMPA) receptor regulatory proteins (TARPs). In this investigation, we examined the distribution patterns of the stargazin-like proteins γ2, γ3, and γ4 in the human central nervous system (CNS). In addition, we investigated whether human γ2 or γ4 could modulate the electrophysiological properties of a neuronal VDCC complex transiently expressed in Xenopus oocytes. Results: The mRNA encoding human γ2 is highly expressed in cerebellum, cerebral cortex, hippocampus and thalamus, whereas γ3 is abundant in cerebral cortex and amygdala and γ4 in the basal ganglia. Immunohistochemical analysis of the cerebellum determined that both γ2 and γ4 are present in the molecular layer, particularly in Purkinje cell bodies and dendrites, but have an inverse expression pattern to one another in the dentate cerebellar nucleus. They are also detected in the interneurons of the granule cell layer though only γ2 is clearly detected in granule cells. The hippocampus stains for γ2 and γ4 throughout the layers of the every CA region and the dentate gyrus, whilst γ3 appears to be localized particularly to the pyramidal and granule cell bodies. When co-expressed in Xenopus oocytes with a CaV2.1/β4 VDCC complex, either in the absence or presence of an α2δ2 subunit, neither γ2 nor γ4 significantly modulated the VDCC peak current amplitude, voltage-dependence of activation or voltage-dependence of steady-state inactivation. Conclusion: The human γ2, γ3 and γ4 stargazin-like proteins are detected only in the CNS and display differential distributions among brain regions and several cell types in found in the cerebellum and hippocampus. These distribution patterns closely resemble those reported by other laboratories for the rodent orthologues of each protein. Whilst the fact that neither γ2 nor γ4 modulated the properties of a VDCC complex with which they could associate in vivo in Purkinje cells adds weight to the hypothesis that the principal role of these proteins is not as auxiliary subunits of VDCCs, it does not exclude the possibility that they play another role in VDCC function

    Dilepton Production at Fermilab and RHIC

    Get PDF
    Some recent results from several fixed-target dimuon production experiments at Fermilab are presented. In particular, we discuss the use of Drell-Yan data to determine the flavor structure of the nucleon sea, as well as to deduce the energy-loss of partons traversing nuclear medium. Future dilepton experiments at RHIC could shed more light on the flavor asymmetry and possible charge-symmetry-violation of the nucleon sea. Clear evidence for scaling violation in the Drell-Yan process could also be revealed at RHIC.Comment: 5 pages, talk presented at the RIKEN-BNL Workshop on 'Hard Parton Physics in Nucleus-Nucleus collisions, March 199

    Numerical solution of the steady-state Navier-Stokes equations for hypersonic flow about blunt axisymmetric bodies

    Get PDF
    The steady-state Navier-Stokes equations are solved for hypersonic flow about blunt axisymmetric bodies. The equations of motion are solved by successive approximations using an implicit finite-difference scheme. The results are compared with viscous shock-layer theory, experimental data, and time-dependent solutions of the Navier-Stokes equations. It is demonstrated that viscous shock-layer theory is sufficiently accurate for the range of flight conditions normally encountered by entry vehicles

    Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Get PDF
    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis

    Numerical solution of the hypersonic viscous-shock-layer equations for laminar, transitional, and turbulent flows of a perfect gas over blunt axially symmetric bodies

    Get PDF
    The viscous shock layer equations applicable to hypersonic laminar, transitional, and turbulent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies are presented. The equations are solved by means of an implicit finite difference scheme, and the results are compared with a turbulent boundary layer analysis. The agreement between the two solution procedures is satisfactory for the region of flow where streamline swallowing effects are negligible. For the downstream regions, where streamline swallowing effects are present, the expected differences in the two solution procedures are evident

    Elephant cognition in primate perspective

    Get PDF
    On many of the staple measures of comparative psychology, elephants show no obvious differences from other mammals, such as primates: discrimination learning, memory, spontaneous tool use, etc. However, a range of more naturalistic measures have recently suggested that elephant cognition may be rather different. Wild elephants sub-categorize humans into groups, independently making this classification on the basis of scent or colour. In number discrimination, elephants show no effects of absolute magnitude or relative size disparity in making number judgements. In the social realm, elephants show empathy into the problems faced by others, and give hints of special abilities in cooperation, vocal imitation and perhaps teaching. Field data suggest that the elephant’s vaunted reputation for memory may have a factual basis, in two ways. Elephants’ ability to remember large-scale space over long periods suggests good cognitive mapping skills. Elephants’ skill in keeping track of the current locations of many family members implies that working memory may be unusually developed, consistent with the laboratory finding that their quantity judgements do not show the usual magnitude effects.Publisher PDFPeer reviewe

    Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Full text link
    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.Comment: version in press, Physical Review Letters; 17 pages, 5 figures (includes supplementary material
    corecore